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Abstract—A study is made of natural convection in a horizontal annular porous layer in rotation about
its axis. Isothermal boundary conditions are applied on both inner and outer boundaries, with the outer
boundary being warmer. For such conditions, no symmetry with respect to a vertical diameter can be
expected for the flow and temperature fields and the whole annular region must be considered. Two-
dimensional steady state solutions are obtained numerically. Results indicate that the rotation generates a
net circulating flow around the annulus relative to the porous matrix and drastically reduces the overall
heat transfer. These effects occur at relatively low angular velocities for which the centrifugal forces are
negligible compared to gravity, and inertial effects may be neglected.

1. INTRODUCTION

FREE CONVECTION in containers rotating about a hori-
zontal axis arises in food industries where thermal
processing of contained fluids is done for pasteur-
ization and sterilization. In many thermal pro-
cessing systems, the cans, while being maintained hori-
zontal, are entrained into complex motions, a basic
feature of which is rotation about their axes [1-3].
Since the processing time is related to the heat transfer
across the can surface, it is important to know how the
rotation affects the heat transfer. The present study
pertains to that goal.

Within the context of convective heat transfer, we
want to examine the interaction between rotation
about a horizontal axis and the gravity force. For
simplicity, we consider a horizontal annulus rotating
about its axis and filled with a fluid-saturated porous
medium. Uniform temperatures are imposed on the
inner and outer boundaries of the annulus, with the
outer boundary being the warmer boundary. The flow
in the annulus is assumed to be two-dimensional in a
vertical, r—8 plane; the rotational rate of the annulus
is taken as constant. The foregoing is, of course, a
considerable simplification of the food processing
problem. However, the annulus, with differentially
heated walls, admits steady flow solutions which are
not possible in a cylinder subjected to a step change
of wall temperature. The present study provides
numerical solutions for the flow in a fluid-saturated
porous annulus, when rotating in a gravity field.

2. GOVERNING EQUATIONS

The governing equations for the present problem
may be expressed in either of two coordinate systems,
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one being fixed to the external gravity vector g and
the other one to the rotating porous matrix. These
two situations are depicted in Figs. 1(a) and (b). respec-
tively. Strictly speaking, only the gravitationally-
locked coordinate system of Fig. 1{(a) may be termed
‘inertial’. However, all solutions considered in this
study are limited to weak angular velocities €', such
that results for the coordinate system in Fig. 1(b}) also
correspond to an inertial reference frame.

In addition, it is assumed that the steady state form
of Darcy’s law prevails for all cases considered ; that
is, the filtration velocity adjusts itself instantaneously
to the applied buoyancy forces. As a consequence,
the time-dependent effects of rotation are felt only
through the thermal inertia of the fluid-saturated
porous matrix. At low angular velocities Q', a set
of equations based on either of the two coordinate
systems may be used with equal success in the numeri-
cal approach ; one set leads to a steady state solution
whereas the other one is time-dependent. Results from
both approaches, properly transformed, are identical.

The flow will be assumed to be two-dimensional.
According to ref. [4], in the absence of rotation, this
assumption is valid for a sufficiently short annulus. It
is also valid for a long annulus, provided the Rayleigh
number is sufficiently low. Also, from ref. {4}, at higher
Rayleigh numbers in a long annulus the flow is
observed to remain two-dimensional over a large part
of the annulus. Since we are interested in the per-
turbing effect of weak rotation, and the Rayleigh num-
bers are moderate, we will adopt the two-dimensional
assumption.

2.1. Rotating coordinate system

Consider a horizontal porous annulus in steady
rotation, with the coordinate frame rotating with the
annulus. In such a coordinate frame the geometry is
as shown in Fig. 1(b).

The momentum equation for flow in a rotating
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NOMENCLATURE
Da  Darcy number, equation (3a) 0 angular (i.e. circumferential) coordinate
Ek  porous medium Ekman number, 6, phase angle
equation (3b) R dynamic viscosity of the fluid
Fr  Froude number, equation (3¢) [kgm~'s™ Y]
g gravitational acceleration [ms™7] v kinematic viscosity of the fluid [m?s~']
K permeability of the porous medium [m?) P density of the fluid fkgm ]
k thermal conductivity of the saturated (pc); heat capacity of the fluid Jm 3K~ ]
porous medium [Wm~'K~] (pc), heat capacity of the saturated porous
P dimensionless pressure medium [Jm~3K~']
p dimensionless reduced pressure (pc), heat capacity of the solid [Jm=>K ']
r dimensionless radial coordinate o heat capacity ratio, (pc),/(pc);
R radius ratio, equation (15) ¢ dimensionless heat transfer rate averaged
Ra  Rayleigh number, equation (14a) over the inner boundary
t dimensionless time ¥ dimensionless stream function
T dimensionless temperature difference, Q dimensionless angular velocity, equation
equation (14b) (14¢)
AT, characteristic temperature difference,
(Ty,-T) [K] Superscripts
u dimensionless velocity in r-direction 4 dimensional variable
v dimensionless velocity in -direction. * solid body rotation
- variables in rotating coordinate frame,
Greek symbols equation (28).
o thermal diffusivity of the saturated
porous medium, (k/(pc)y) {m?s~] Subscripts
B thermal expansion coefficient of the fluid 1 value on inner cylinder
K- 2 value on outer cylinder
€ porosity f fluid velocity, equation (1).

porous medium may be derived from the Navier—
Stokes equation for a continuum fluid [5]
% +(Vi'V)vp = — %VP’+VV’V;

+g()— x (' xr)--20 xv. (1)
This equation is expressed in a coordinate frame rotat-
ing at a constant angular velocity £’ ; the fluid velocity
vector is v;. The last two terms on the right-hand side
are the centrifugal force and Coriolis terms, respec-
tively. A positive value of Q' corresponds to a coor-
dinate frame rotating counterclockwise with respect
to a fixed external reference frame. For the geometry
of Fig. 1{(b), the gravity vector is assumed to be fixed
in the external reference frame; thus, when viewed
from the coordinate frame rotating with the hori-
zontal annulus, the gravity vector rotates clockwise at
an angular speed Q.

By volumetric averaging of (1) and by neglecting
the local and convective acceleration terms on the left-
hand side {6, 7], the following momentum equation
for flow in a porous medium results:

H

B _Bor_ _vupr .
KV sV v VP +pg(t)

—-pﬂ’x(ﬂ’xr’}—-Z%ﬂ'xv' @

where v’ is the filtration velocity and K the perme-
ability. The first and second terms on the left-hand
side of (2) are the Darcy and Brinkman terms, re-
spectively. The latter accounts for the viscous effects
of the boundaries. In the rotating coordinate frame,
the body force terms include the time-dependent exter-
nal gravity field, g(#), the centrifugal acceleration
term, and the Coriolis term, volumetric averaging
being straightforward for this last term since Q' is
uniform throughout the medium.

The ratio of the Darcy and Brinkman terms is called
the Darcy number

Da = K/L? (3a)

with L’ being a characteristic length. The ratio of the
Darcy term, which expresses the viscous resistance of
the solid matrix, to the Coriolis term produces a
porous medium Ekman number

Ek = v/KQ'. (3b)

Further, the ratio of the third and second terms on
the right-hand side of (2) represents the cen-
trifugal/gravity force ratio in the form of a Froude

number
Fr=Q'%}g. (3¢)

In the present paper we will assume the angular
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r - 6 coordinate system
fixed to gravity vector

¢ - 8+ x’' coordinate system
fixed to porous matrix

Fic. 1. Flow geometry and coordinate systems. (a) Non-rotating coordinate system : coordinates '8 fixed
to the external gravity vector. The porous matrix rotates counterclockwise. (b} Rotating coordinate system :
coordinates r"-8 fixed to the rotating porous matrix. Gravity vector rotates clockwise.

speed £’ to be small, such that rotational effects may
be neglected relative to the viscous resistance and the
gravity field (i.e. we assume large Ek and small Fr).
This is justified for certain food processing problems.
For example, for a porous medium consisting of
spheres of diameter 2 mm, and saturated with water,
we have, approximately, K=4x10"° m? and
v=1x10"*m?s~ . If the annulus has an outer diam-
eter of about 6 cm or less, and the rotation rate is
restricted to 4 rad s' or less, the associated Ek and
Fr ranges are Ek > 60 and Fr < 0.1.

With the practical values assumed above, we have
Da ~ 10~%, Consequently, the Brinkman term is
expected to have a negligible effect on the results [8]
and will not be considered.

With the neglect of rotational and boundary viscous
effects in (2), and with the use of the Boussinesq
approximation (Ap « p) and the linear relationship
between density and temperature given by

— = —BAT 4
the Darcy equations for flow in a porous medium,

Wt 33:5-4

expressed in the two-dimensional polar coordinates
of Fig. 1(b), are:

r-direction
K Kip
g -—QE(T'—T’,)cos @r+0-=2; (s)
v ucr
O-direction
’ K9ﬁ 3 r : ey E_l. ép_'
v = =T~ T)sin (@1 +6) - P (5b)

where p” is the reduced pressure (obtained by sub-
tracting the hydrostatic component). The Darcy equa-
tions are time-dependent via the rotating gravity vec-
tor and the time dependence of 7" and p’.

The other governing equations are the continuity

equation
1iore &v
;(737"*“55) =0 ®

and the energy equation
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T’ oT' v oT’
(pc), Fra + (Pc)r<“’ " + 7 E) =kV3T (1

where

(pc), = e(pc)c+ (1 —e)(pe), ®)

and (pc); is the heat capacity of fluid, (pc), the heat
capacity of solid, (pc), the heat capacity of saturated
porous medium, ¢ the porosity, and k the thermal
conductivity of saturated porous medium.

The boundary conditions associated with equations
(5)—(7) are

r=ry: =0, T'=T),
r=ry: =0, T"'=T,>T). 9

Equations (5)-(7) are made dimensionless by the
use of the following reference scales:

’

characteristic length r

characteristic time (po)oriilk = ari/a

k
characteristic velocit, —— = a/r
Y (pe)er' Iri
characteristic pressure ku au/K
ra =
P ok~

characteristic temperature AT, = T,—-T

with 6 = (pc),/(pc)c and a = k/(pc).
In dimensionless form, the governing equations
(5)—(7) become

(10a-¢)

u= —Ra Tcos(Qt+0)—% (11a)
: 10p
v=RaTsin(Qt+6 73 (11b)
1{dru ov
;(E + %) =0 (12)
or 0T véT 5
E+u3’7+;3—0——VT (13)
in which
Ra = KgPAT,r'/va
T =(T"-T")/AT,
Q=Qor/a (14a—<)
with boundary conditions
r=1: u= 01 T=0
r=ryfri=R: u=0, T=1. (15)

The parameters which appear are the Rayleigh
number, Ra, the dimensionless rotation rate, 2, and
the radius ratio, R.

Pressure may be eliminated from equations (1la)
and (11b) by cross-differentiation. We obtain

L. RoBILLARD and K. E. TORRANCE

cos (Qt+6) QI
r 00

(16)

where ¢ is the stream function related to the velocity
components by

6T
V) = —Ra [sin (Q:+0)Ua—r +

L

u=-_=5 e (17a,b)

The rotation, combined with gravity, does not
permit any assumption of symmetry (either centro-
symmetry or symmetry with respect to a given diam-
eter). Therefore, the boundaries at r = | and R can-
not be connected by any streamline. In fact, one
must allow for the possibility of a net circulating flow
between the two boundaries. It follows that the appro-
priate boundary conditions for ¢ and T are

=y, T=0
r=R: y=0 T=1

r=1:
(18)

with ¢, corresponding to an unknown net circulating
flow around the annulus.

An additional condition is required to find y,. It
may be obtained by using the periodicity condition
]

&(r,80,1) = &(r,0+42n.0) (19)

where £ stands for any physical variable, and by inte-
grating equation (11b) first over 0 < 6 < 2r and, after
substituting equation (17b), over | <r< R, we
obtain

Ra
lpl:ﬂ

R ("2r
I J Tsin(Qr+60)dodr. (20)
1 0
This equality relates the volume circulation around
the annulus, ¥, to an integral of the circumferential
buoyancy force.

Equations (13), (16) and (17), together with bound-
ary conditions (18) and (20), describe the flow in a
coordinate system rotating with the porous annulus.
The governing parameters are Ra, Q and R. The equa-
tions admit steady periodic solutions in which the flow
and temperature fields rotate at a constant angular
velocity within the annulus while being locked to the
rotating external gravity vector.

2.2. Non-rotating coordinate system

Consider next a porous annulus which is in steady
rotation with respect to a fixed (inertial) reference
frame, as in Fig. 1(a). With respect to the fixed frame
(in this case fixed to the gravity vector), the annulus
rotates counterclockwise at a steady angular speed Q'.
For rectilinear motion of a porous medium without
acceleration, Darcy’s law remains the same as if the
porous medium was at rest, except that a relative
velocity appears [10]. In general. in a fluid body
undergoing rotation each fluid particle experiences
centrifugal and Coriolis forces. However, such forces
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may be neglected at low rotation rates, as is assumed
in the present study (i.e. large Ek and small Fr). Thus,
the appropriate Darcy equations are, after accounting
for the relative velocity :

r-direction

7

. _K| . _.
u=#[ pgB(T’—T)cos 0 ar,]. (21a)

O-direction
f o K y ey 1 9p’
v —-Q —;[—pgﬂ(T—TJSlﬂo—;jgo—:I.

(21b)

Note that the time variable arises via the time depen-
dence of T’ and p’. If the latter are time invariant in
the fixed frame, the velocity field is also time invariant.

The continuity equation is unchanged from its form
in equation (6). However, the energy equation intro-
duces an additional term because the motion of the
porous matrix contributes to heat transport in the 6-
direction. The energy equation becomes

oT’ oT" v oT’
(pc)p 2 + (PC)r[l" Fraaae -6_0_]

+(py— (o T = kT, 2)

Using the characteristic quantities given in equation
(10), and introducing the stream function, the govern-
ing dimensionless equations are

voT 1 oT 2
+;%_(;_1)g%_=v T (23)

or o
ot +u6r

0T cosf@oT
2 — — — 1 ——n. — —
Vi3 = —2Q/o—Ra [sm 0 e + 60] (24)

and

1oy oy

UH=—— =

r o6’ o (25a,b)

with boundary conditions

w=¢h
r=R: y=0,

T=0
T=1

r=1:
(26)

The additional boundary condition needed to deter-
mine ¥, analogous to equation (20), is

R "2
v, =Q(Rz—l)/2¢r+%J‘ J T'sin 8d0 dr.
1 Jo

@n

Note in the above set of equations (23)—(27) that
the time variable enters explicitly only in the energy
equation. Indeed, as we shall see later for the present
non-rotating, gravitationally-fixed coordinate system,
steady state solutions arise. Also note that four par-

ameters appear in the governing equations: Ra, Q, R
and the heat capacity ratio a.

2.3. Conversion between rotating and non-rotating
reference frames

Solutions of the governing equations are readily
transferred between the rotating and the non-rotating,
gravitationally-locked, coordinate frames. All physi-
cal quantities, except v, ¥, and 6, exactly correspond
in the two systems. To avoid confusion, we will hence-
forth attach overbars to values from the rotating coor-
dinate system, such that

v=0+Qrjo (28a)
Vv =§-Q(r’-R»/2. (28b)

Quantities without overbars on the left refer to the
non-rotating coordinate system of Fig. 1(a) ; such solu-
tions are obtained from equations (23) to (27). Quan-
tities with overbars refer to the rotating coordinate
system of Fig. 1(b) ; such flows are governed by equa-
tions (13), (16)—(18), and (20).

3. NUMERICAL METHOD

Finite difference techniques with uniform mesh size
(18x36) or (36x72) are used in the numerical
approach to discretize the entire annulus. The Poisson
equations (16) or (24) are solved by the method of
successive over-relaxation. The energy equations (13)
or (23) are solved by an alternating direction implicit
method (ADI). Central differences are used in the
numerical formulation of the advective terms.

The ADI method requires boundary conditions in
ras well as 6. The only physical condition that prevails
at the end points in the 8-direction is the periodicity
condition (19). The resulting matrices are handled by
a partition procedure, as used in ref. [11].

The value of the stream function on the inner
boundary is found by numerically evaluating the
integrals in equation (20) or (27) by using a type of
trapezoidal rule integration.

Numerical computations were carried out with time
increments ranging from 0.0005 to 0.002 until the flow
and temperature fields reached the steady (or steady-
periodic) state. The choice of initial conditions was
not observed to have any effect on the final solution
for the ranges of Ra and Q considered.

4. RESULTS AND DISCUSSION

Results are presented for a range of Rayleigh num-
bers from Ra = 50 to 200, and for rotation rates from
Q =0 to 100zx. The radius ratio was held fixed at
R = 2. Except for Fig. 5, the heat capacity ratio was
takenas o = 1.

The graphs shown in Fig. 2 are temperature and
flow fields obtained by increasing the rotation rate, Q.
The left column displays isotherms, the center column
displays steady-state streamlines () in the gravi-
tational reference frame (i.e. Fig. 1(a)), and the right
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column displays streamlines () relative to the rotat-
ing porous matrix. Note for Fig. 2(a), when Q = 0,
that the two flow fields are identical and ¢ = . In the
rotating coordinate frame (i.e. Fig. 1(b)), the flows
are steady periodic and are locked with the rotating
gravity vector. For convenience, the flows in this coor-
dinate frame are shown with the gravity vector in the
downward position. On each of the graphs in Fig. 2,
the positive f-direction is in the counterclockwise di-
rection. Figure 2(a), with Q =0, reproduces the
results published by Caltagirone [4). Also shown in
Fig. 2 are the heat transfer rates ¢, and ¢, on the
inner and outer boundaries, respectively. These values
are in the ratio ¢ ,/¢, = 2 when the radius ratio R = 2.

The graphs of Fig. 2 were obtained by numerically
solving equations (23) and (24) in the gravitational
reference frame. The flow field relative to the porous
matrix, /, was deduced by using equation (28b).

A solution obtained by solving equations (13) and
(16) in the rotating reference frame produces results
which are, except for the angular position of the grav-
ity vector, identical to Fig. 2(d). The temperature and

(b) Q=27

flow fields T and ¢ are steady periodic and rotate at
a constant angular speed Q. Except for the angular
position, the temperature and flow fields in Fig. 2 can
be obtained from equations (13) and (16).

From the sequence of Fig. 2, we may notice some
of the effects induced by rotation, namely the loss of
symmetry, the occurrence of a net circulating flow ¢/ ,,
and the appearance of a phase angle (defined as 6,)
between the gravity direction and the location of the
maximum local heat transfer on the outer boundary.
Another important effect is the drastic reduction in
the overall heat transfer between the outer and inner
radial boundaries with increasing Q.

Figure 3 displays 6,, ¢,, ¥/,, and A, as func-
tions of the rotation rate  for Ra = 100 and ¢ = 1.
A max = (W max — Yemin)/2 is @ measure of the intensity
of the flow relative to the porous matrix. Results for
other values of Ra are shown in Fig. 4.

4.1. Effect of rotation on heat transfer
It is observed in Figs. 3 and 4(a) that the heat
transfer rate decreases monotonically towards the

Winax = 9.962
Wonin = -9.962
v, =0

Vo = 8.25
Voin =-12.54
W1 =-4.22

FiG. 2. Isotherms (left column), streamlines ¥ (center column), and streamlines ¥ (right column) for a

range of rotation rates, 2, with Ra = 100 and ¢ = 1. The center column of Y-streamline graphs corresponds

to a coordinate system fixed to the gravity vector ; the porous annulus rotates counterclockwise. The right

column of J-streamline graphs shows streamlines relative to the porous matrix ; the coordinate system

rotates with the matrix, the gravity vector rotates clockwise, and the flow is shown when g is directed
downwards.
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$, =176 Yo = 41,24 Yoge = 917

¢, =0.877 Yo = 0 WVon = -15.26

9,,k =73° @) Q=10 ¥, =394 V, =-7.77
=10

e = 10.78
Yo =+13.19
W, =-4.23

¢, =146 Y = 233.6 V= 1144

¢, =0.732 Vo= 0 Vo = ~12.25

8, =980° 0 Q=50 ¥, = 2338 ¥, =-1.79
=2Un

Fig. 2—Continued.
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F1G. 3. Effect of angular velocity £ on the phase angle, 8,, the heat transfer rate at the inner boundary,
¢, the net circulation around the annulus, §,, and the flow intensity relative to the porous matrix,
A s = P mex ~¥min)f2. Ra = 100and o = 1.

pure conduction value of 1.44 as Q is increased. It is
also observed in Fig. 3 that the intensity of the flow
field relative to the porous matrix, which may be
expressed as A, increases slightly and remains
quite strong for all Q. This apparent contradiction
disappears when one considers that the orientation of
the flow field ¢ shown in Figs. 2(b)~(f) (i.c. the right-
hand column of graphs) is locked with the gravity
vector and rotates continuously with time. In other
words, the streamlines shown do not correspond to a
steady state and consequently do not represent fluid
trajectories. '

A way to understand physically how the convective
heat transfer is reduced with increasing Q is to con-
sider the sequence of flow fields ¥ in Fig. 2 (i.e. the
center column of graphs). These flow fields cor-
respond to steady states and consequently the stream-
lines shown describe the paths of fluid particles
around the annulus. The heat transport from outer to
inner boundary is related to the amplitude of the fluid
motion in the radial direction and it is observed in
these figures that this amplitude is reduced with
increasing €. :

The presence of the Brinkman term in the governing
equations would not change the qualitative behavior
already described. As shown in ref. {7}, an increasing
Darcy number would lower the heat transfer rates
given-in Figs. 3 and 4(a).

The intensity of the flow field relative to the porous
matrix, A .., is higher with rotation than without
rotation. This is understandable when the following
facts are considered : the gravity field g is always pre-
sent with the same strength, no matter how high the
value of € there is no fluid inertia and the fluid

particles are immediately accelerated to the velocity
that equilibrates with the imposed buoyancy force;
and the temperature field associated with the reduced
convective heat transfer does not exert on the flow
field ¢ the buoyant force that occurs when § is equal
to zero.

The heat transfer reduction is accompanied by the
phase angle 8, defined previously. As seen in Figs. 3
and 4(c), 6, increases from zero to an asymptotic value
of r/2 with increasing €. Also, the net circulating fiow
¢, destroys the symmetry of the flow observed in Fig.
2(a). From Figs. 3 and 4(b), ¥, increases, reaches a
maximum, and then decreases as §Q is increased. In
the latter limit, there is a tendency for the original
symmetry to reappear.

It may be noticed in Figs. 3 and 4 that the quantities
8,, ¢, ¥, and Ay, satisfy the following conditions
of symmetry and antisymmetry in the neighborhood
of Q = 0 as required by the physics of the problem:

0,(Q) = —0,(—Q), Q) = (-Q)
i@ = —¥ (-0, Wnul) = A, (~0).

In summary, the effect of an imposed rotation is to
disturb the flow pattern in a way that greatly reduces
the convective heat transfer. This is the major conse-
quence of rotation within the range of governing par-
ameters considered here and a similar trend is
expected for other problems involving rotation about
a horizontal axis. A decrease of heat transfer by
rotation has also been reported by Hide and Mason
[12] for the case of a fluid-filled vertical annulus rotat-
ing about its axis. For that situation, however, the
inner boundary was heated and heat transfer inhi-
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bition occurs for different reasons, tied up to the
axisymmetry of the flow.

4.2. Induced net circulating flow

Without convection, the net circulating flow, rela-
tive to the coordinate system fixed with the gravity
vector, would be the one corresponding to solid body
rotation, y¥=Q(R*—1)/26. In other words, as

961

shown in Fig. 4(b), the occurrence of a non-zero value
for §, (f, = ¢, — ¥ * from equation (28b)) is clearly
the result of free convection. Without rotation, the
free convection produces a flow field consisting of two
contrarotating cells, as shown in Fig. 2(a). When a
small rotation rate is introduced, the presence of those
cells, which are locked with the gravity vector, con-
stitutes an obstacle to the full establishment of solid

1 L i 1 1
0 20 40 60 80 100
Qn
-30 T T T T

=

®)

-
0 20 40

FiG. 4. Effect of Ra and Q, ¢ = 1. (a) Heat transfer rate at inner boundary, ¢,. (b) Net circulation, ¥,,
around the annulus. (c) Phase angle 6.
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<

©

100

Fi1G. 4—Continued.

body rotation for the fluid. Thus ¢, is smaller than
*and a negative value of §, occurs. With increasing

Q, the cells gradually vanish from the flow field

(sequence of ¥ fields in Fig. 2) and ¢, — ¥}

4.3. Influence of ¢

The role of o, which appears in equations (23);
(24) and (27), arises from the connection between
the rotational and gravitationally-locked coordi-
nate systems expressed by the relationship ¢ =
¥ —Q(*~RY)/20. This is evidenced by the results
in Fig. 5 (which have been obtained from equations
{23) and (24)), and which correspond to ¢ =0.5.
While the temperature field and the flow field §/ in the
rotating frame correspond perfectly to Fig. 2(d), the
flow field  in the gravitational frame is more com-
parable to Fig. 2(e). As the heat capacity (pc);is larger
in Fig. 5, a smaller amplitude of fluid motion in the
radial direction is required to convey the same amount
of heat between the two boundaries.

¢, =176
$, =0.877
8,=73

¥y

=86.5

5. SUMMARY

Numerical calculations were carried out to study
natural convection in a horizontal annular porous
layer in rotation about its own axis in a gravity field.
The outer boundary of the annulus was maintained at
a higher temperature than the inner boundary. Flow
fields were examined in both rotating and gravita-
tionally-fixed coordinate frames. Rotational effects
arise only through the thermal inertia of the porous
matrix. Since fluid inertia effects do not arise in the
Darcy momentum equations, the natural convection
flows were observed to lock onto the rotating gravity
vector.

Natural convection in the presence of rotation
induces a net circulating flow around the annulus
relative to the rotating matrix (¢, in Figs. 3 and 4(b)).
Also, the intensity of natural convection within the
annulus, relative to the rotating matrix, was observed
to increase slightly with rotation rate (A{,,, in Fig.

Unax = 817
‘\ﬁm =~15.27
¥, =-7.78

FiG. 5. Isotherms (left graph), streamlines ¥ (center graph), and streamlines ¥ (right graph) when Q = 10z,
Ra = 100 and ¢ = 0.5. Compare with Fig. 2(d) to deduce the effect of a.
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3) with Ra constant. Most significantly, the convective
heat transfer rate was observed to decrease with
increasing rotation rate (the heat transfer rate, ¢,, at
the inner boundary is shown in Figs. 3 and 4(a)). This
is attributable to the heat capacity, and rotation, of
the porous matrix. As the rotation rate, Q, is
increased, fluid trajectories relative to the gravi-
tational frame (the y-fields in Fig. 2) show a reduced
radial amplitude. This corresponds to a reduced radial
convective heat transfer.
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INHIBITION DU TRANSFERT THERMIQUE CONVECTIF DANS UNE COUCHE
POREUSE ANNULAIRE TOURNANT A FAIBLE VITESSE ANGULAIRE

Résumé—On étudie la convection naturelle dans une couche poreuse annulaire horizontale, en rotation
autour de son axe. Des conditions aux limites isothermes sont appliquées sur les frontiéres intérieure et
extérieure, cette derniére étant plus chaude. Aucune symétrie par rapport a un diamétre vertical ne peut
étre espéré pour les champs de température et de vitesse et on doit considérer toute la région. On obtient
numériquement des solutions permanentes bidimensionnelles. Les résultats montrent que la rotation génére
un écoulement de circulation autour de I'anneau par rapport i la matrice poreuse et qu'elle réduit
notablement le transfert thermique global. Ces effets se produisent & des vitesses angulaires relativement
faibles pour lesquelles la force centrifuge est négligeable a celle de pesanteur et les effets d’inertie peuvent
étre négligés.

BEHINDERUNG DES KONVEKTIVEN WARMETRANSPORTS IN EINEM POROSEN,
LANGSAM ROTIERENDEN RINGSPALT

Zusammenfassung-—Die natiirliche Konvektion in einem horizontalen porésen Ringspalt, der um seine
Achse rotiert, wird untersucht. An der inneren und duBeren Berandung herrscht konstante Temperatur,
wobei die duBere Berandung wirmer ist. Unter solchen Bedingungen kann nicht erwartet werden, daB das
Strdmungs- und das Temperaturfeld beziiglich der senkrechten Achse symmetrisch ist—der gesamte
Ringraum muB betrachtet werden. Das zweidimensional stationire Problem wird gelSst. Die Ergebnisse
zeigen, daB die Rotationsbewegung eine Zirkulationsstrdmung im Ringraum verursacht, welche die pordse
Matrix in Umfangsrichtung durchdringt und den Gesamtwirmeiibergang drastisch beeintrichtigt. Diese
Effekte treten bei relativ kleinen Winkeigeschwindigkeiten auf, bei denen die Zentrifugalkrifte gegeniiber
der Schwerkraft vernachlissigt werden kdnnen, dies gilt auch fir die Trigheitseflekte.

TNMOJABJIEHME KOHBEKTHMBHOI'O TEILIOITEPEHOCA B KOJIBLIEBOM ITOPHCTOM
CJIOE, BPAIIAIOMIEMCS CO CJIABOM YTJIOBOAI CKOPOCTBIO

AmoTamms—HCClIeyeTCS €CTECTBCHNAN KOHBCKIHA B OPU3OHTANLHOM KONBLUEBOM HODHCTOM Cloe,
BPAIIAIOWEMCE BOXPYT cBoelt ocu. Ha BHYTPEHHIOW H BHEIIHIOW IrPAHHIIN HANIOXCHH H3OTCPMHYCCKHE
FPAHHYHLC YCROBRS, NPHYEM BHCIIHAA IPAHMIA HArpeTa CHiubgee. I[IpH NaHHBIX yC/OBEAX HEIR3A
OXHIATH CHMMCTDHH TCYCHHS OTHOCHTC/ILHO BEPTHEAILHOrO AHAMETPA, M CleAyeT PAcCMATPMBATHL
TeMnepaTypHBIC NONA BO Beeit xosbiesoll o6nacTH. YHCNICHHO MOJMYMCHb! NBYMEPHBIC CTAIHOHADHLIC
pemenns. Pesy bTaThl NOKAILBAIOT, ITO BPAINCHEE CHOCOGCTBYET NOABJACHHIO PE3YALTHPYIOUICTO LHP-
KYASIMOHHOTO TCYCEMS BOKPYT KOJMIA OTHOCHTC/NLHO NOPECTOR MATPHIM H 3HAYHTENLHO CHHXACT
cymMMapHBil Terwonepenoc. Jlanuste 3ddexTii HAGMORAIOTCR NPH CPABHHTENLHO HH3KMX 3HARCHEAX
YTI0BOM CROPOCTH, ANN KOTOPMX NEETPOGEXHMC CHIM NPeHCOPEXEMO MAML O CPABHEHMIO C CHIOH
TXCCTH, B HHCPUHOHHLIMA 3dexTamMn MOXHO nperebpeus.



