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convective heat transfer inhibition in an annular 
porous layer rotating at weak angular velocity 
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Abstract-A study is made of natural convection in a horizontal annular porous layer in rotation about 
its axis. isothermal boundary conditions are applied on both inner and outer boundaries, with the outer 
boundary being warmer. For such conditions, no symmetry with respect to a vertical diameter can be 
expected for the flow and temperaturn fields and the whole annular region must be considered. Two- 
dimensional steady state solutions are obtained numericaIly. Results indicate that the rotation generates a 
net aviating flow around the annulus relative to the porous matrix and drastically reduces the overall 
heat transfer. These cfkts occur at relatively low angular velocities for which the centrifugal forces are 

negligible compared to gravity, and inertia1 effects may be neglected. 

1. lNTROOUGTiON 

FREE CONVECTION in containers rotating about a hori- 
zontal axis arises in food industries where thermal 

processing of Fontaine fluids is done for pasteur- 
ization and sterilization. In many thermal pro- 
cessing systems, the cans, while being maintained hori- 
zontal, are entrained into complex motions, a basic 
feature of which is rotation about their axes [l-31. 
Since the processing time is related to the heat transfer 
across the can surface, it is important to know how the 
rotation affects the heat transfer. The present study 
pertains to that goal. 

Within the context of convective heat transfer, we 
want to examine the interaction between rotation 
about a horizontal axis and the gravity force. For 
simplicity, we consider a horizontal annulus rotating 
about its axis and filled with a fluid-saturated porous 
medium. Uniform temperatures are imposed on the 
inner and outer boundaries of the annulus, with the 
outer boundary being the warmer boundary. The flow 
in the annulus is assumed to be two-~men~onal in a 
vertical, r-83 plane; the rotational rate of the annulus 
is taken as constant. The foregoing is, of course, a 
considerable simpli~cation of the food processing 
problem. However, the annulus, with differentially 
heated walls, admits steady flow solutions which are 
not possible in a cylinder subjected to a step change 
of wall temperature. The present study provides 
numerical solutions for the flow in a fled-~tumted 
porous annulus, when rotating in a gravity field. 

2. GGVERNtNG EGUATIONS 

The governing equations for the present problem 
may be expressed in either of two coordinate systems, 
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one being fixed to the external gravity vector g and 
the other one to the rotating porous matrix. These 
two situations are depicted in Figs. l(a) and (b), respec- 
tively. Strictly speaking, only the gravitationally- 
locked coordinate system of Fig. 1 (a) may be termed 
‘inertial’. However, all solutions considered in this 
study are limited to weak angular velocities R’, such 
that results for the coordinate system in Fig. l(b) also 
correspond to an inertial reference frame. 

In addition, it is assumed that the steady state form 
of Darcy’s law prevails for all cases considered ; that 
is, the filtration velocity adjusts itself instantaneously 
to the applied buoyancy forces. As a consequence, 
the time-dependent effects of rotation are felt only 
through the thermal inertia of the fluid-saturated 
porous matrix. At low angular velocities R’, a set 
of equations based on either of the two coordinate 
systems may be used with equal success in the numeri- 
cal approach ; one set leads to a steady state solution 
whereas the other one is time-dependent. Results from 
both approaches, properly t~nsfo~~, are identical. 

The tlow will be assumed to be two-dimensional. 
According to ref. [4], in the absence of rotation, this 
assumption is valid for a sufhciently short annulus. It 
is also valid for a long annulus, provided the Rayleigh 
number is sufficiently low. Also, from ref. [4], at higher 
Rayleigh numbers in a long annulus the flow is 
observed to remain two-dimensional over a large part 
of the annulus. Since we are interested in the per- 
turbing effect of weak rotation, and the Rayleigh num- 
bers are moderate, we will adopt the two-dimensional 
assumption. 

2.1. Rotating coordinate system 
Consider a horizontal porous annulus in steady 

rotation, with the coordinate frame rotating with the 
annulus. In such a coordinate frame the geometry is 
as shown in Fig. 1 (b). 

The momentum equation for flow in a rotating 
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NOMENCLATURE 

DU Darcy number, equation (3a) e angular (i.e. circumferential) coordinate 
Ek porous medium Ekman number, 0, phase angle 

quation (3b) (u dynamic viscosity of the ff uid 
Fr Froude number, equation (3~) &g m- ’ s- ‘1 

9 gravitational acceleration [m s- 3 V kinematic viscosity of the fluid [m’ s- ‘] 
K permeability of the porous medium [rnq p density of the fluid [kgm--‘] 
k thermal conductivity of the saturated @c)’ heat capacity of the fluid [J me3 K- ‘1 

porous medium yW m- ’ K- ‘1 (PC)‘, heat capacity of the saturated porous 
P dimensionless pressure medium [J m-'K- ‘1 
P dimensionless reduced pressure (PC), heat capacity of the solid [J mm3 K- ‘1 
r dimensionless radial coordinate heat capacity ratio, (p~)~j’@c)’ 
R radius ratio, equation (I 5) G dimensionless heat transfer rate averaged 
Ra Rayleigh number, equation (14a) over the inner boundary 
t dimensionl~ time # dimensionle~ stream function 
T dimensionless temperature difference, B dimensionless angular velocity, equation 

equation (14b) (W 
AT, characteristic temperature difference, 

(T;- T;) WI Superscripts 
U dimensionless velocity in r-direction ’ dimensional variable 
V dimensionless vetocity in O-direction. * solid body rotation 

variabies in rotating coordinate frame, 
Greek symbols equation (28). 

c( thermal di~usi~ty of the saturated 
porous medium, (k/(&) [m’s_ ‘1 Subscripts 

B thermal expansion coefficient of the fluid 1 value on inner cylinder 

[K-II 2 value on outer cylinder 
E porosity f fluid velocity, equation (I). 

porous medium may be derived from the Navier- 
Stokes equation for a continuum fluid [S] 

av; 
z +(v;‘v)v; = - ~vP’+vv’v; 

+g(t’)-~x(fxxr’)-mxvv;. (1) 

This equation is expressed in a coordinate frame rotat- 
ing at a constant angular velocity &X’ ; the fluid velocity 
vector is vi. The last two terms on the right-hand side 
are the centrifugal force aid Coriolis terms, respec- 
tively. A positive value of $2’ corresponds to a coor- 
dinate frame rotating counterclockwise with respect 
to a tixed external reference frame. For the geometry 
of Fig. 1 (b), the gravity vector is assumed to be fixed 
in the external reference frame; thus, when viewed 
from the coordinate frame rotating with the hori- 
zontal annulus, the gravity vector rotates clockwise at 
an angular speed Q’. 

By volumetric averaging of (1) and by neglecting 
the local and convective acceleration terms on the left- 
hand side [6,7], the following momentum equation 
for flow in a porous medium results : 

c,*__ !.+ 
K E 

= -vP'+pg(f') 

-pn’xfR’xr’)-Z+W’ (2) 

where v’ is the filtration velocity and K the perme- 
ability. The first and second terms on the left-hand 
side of (2) are the Darcy and Brinkman terms, re- 
spectively. The latter accounts for the viscous effects 
of the boundaries. In the rotating coordinate frame, 
the body force terms include the time-dependent exter- 
nal gravity field, g(f), the centrifugal acceleration 
term, and the Coriohs term, voIumet~c averaging 
being straightforward for this hst term since Q’ is 
uniform throughout the medium. 

The ratio of the Darcy and Brinkman terms is called 
the Darcy number 

Da = K/C2 (3a) 

with L’ being a characteristic length. The ratio of the 
Darcy term, which expresses the viscous resistance of 
the solid matrix, to the Coriolis term produces a 
porous medium Ekman number 

Ek =I v/KR’. (3b) 

Further, the ratio of the third and second terms on 
the right-hand side of (2) represents the cen- 
trifugal/gravity force ratio in the form of a Froude 
number 

Fr = iY2r’/g. (34 

In the present paper we will assume the angular 
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- 0 eeordln8te ayatam 
xed to gravity vector 

FIG. I. Flow geometry and coordinate systems. (a) Non-rotating coordinate system : coordinates r’-f? Exed 
to theextemal gravity vector. The porous matrix ro~tescounte~I~k~. (b) Ro~ti~coo~i~te system: 

coordinates r’4 fixed to the rotating porous matrix. Gravity vector rotates clockwise. 

speed $3’ to be small, such that rotational effects may 
be neglected relative to the viscous resistance and the 
gravity field (i.e. we assume large Ek and small Fr). 
This is justified for certain food processing problems. 
For example, for a porous medium consisting of 
spheres of diameter 2 mm, and saturated with water, 
we have, approximately, K = 4 x IO-* m2 and 
Y = 1 x low6 mr s- ‘. If the annulus has an outer diam- 
eter of about 6 cm or less, and the rotation rate is 
restricted to 4 rad s- ’ or less, the associated Ek and 
FrrangesareEk>6OandFr<O.l. 

With the practical vahtes assumed above, we have 
Ila % 10m6. Consequently, the Brinkman term is 
expected to have a negligible effect on the results {S] 
and will not be considered. 

With the neglect of rotational and boundary viscous 
effects in (2), and with the use of the Boussinesq 
approximation (Ap << p) and the linear relationship 
between density and temperature given by 

the Damy equations for flow in a porous medium, 

expressed in the two-dimensional polar coordinates 
of Fig. 1 (b), are : 

r-direction 

B-direction 

ffnQ@ y(T’-T;)sin(R’t’+B)- 2; $ (5b) 

where p’ is the reduced pressure (obtained by sub- 
tracting the hydrostatic component). The Darcy qua- 
tions are time-dependent via the rotating gravity vec- 
tor and the time dependence of T’ and p’. 

The other governing equations are the continuity 
equation 

and the energy equation 
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dT’ V’aT 
Ii dr’ + r; z =kV’T’ (7) 

dT cos(fU+@ dT 
r de I 

where (16) 

(PC)p = s(pe),+(l --E)(Pe), (8) 

and @& is the heat capacity of fluid, @c), the heat 
capacity of solid, @c),, the heat capacity of saturated 
porous medium, E the porosity, and k the thermal 
conductivity of saturated porous medium. 

The boundary conditions associated with equations 
(5)-(7) are 

where I,G is the stream function related to the velocity 
components by 

1 a* w 
UE__. 

r de' 
VI --_ 

Er 
(17a,b) 

r’ = r’, : u’ = 0, T’ = T; 

r’ = r; : u’=O, T’= T;> T;. (9) 

Equations (S)-(7) are made dimensionless by the 
use of the following reference scales : 

The rotation, combined with gravity, does not 
permit any assumption of symmetry (either centro- 
symmetry or symmetry with respect to a given diam- 
eter). Therefore, the boundaries at r = 1 and R can- 
not be connected by any streamline. In fact, one 
must allow for the possibility of a net circulating flow 
between the two boundaries. It follows that the appro- 
priate boundary conditions for $ and Tare 

characteristic length 

characteristic time 

characteristic velocity 

, 
rl 

(pc),r;*/& = ar’,‘/a 

k 
- = a/r’, 
@WI 

r=l: 1(1=+,, T=O 

characteristic pressure 
kp - = ap/K 

(pc),K 

r=R: $=O, T=l (18) 

with $, corresponding to an unknown net circulating 
flow around the annulus. 

An additional condition is required to find IL,. It 
may be obtained by using the periodicity condition 

191 

characteristic temperature AT,, = T’r - T’, (1Oa-e) 

with u = @c)&c)~ and a = k/(pc),. 
In dimensionless form, the governing equations 

(S)-(7) become 

C(r, 61) = T(r, e+2n. f) (19) 

where r stands for any physical variable, and by inte- 
grating equation (1 I b) first over 0 < 0 d 2x and, after 
substituting equation (17b), over 1 G r < R, we 
obtain 

u = -Ra Tcos(Rt+6)-!j 

v- RoTsin(Qt+B)-ig 

(1 la) 

(lib) 

*,=; R 
IS 

zn T sin (Dr + 0) d0 dr. (20) 
I 0 

This equality relates the volume circulation around 
the annulus, $ ,, to an integral of the circumferential 
buoyancy force. 

W) 

dT 
dr+~;+;g=V2T (13) 

in which 

Ra = KgfiAT,r’, /va 

T = (T’- T’,)/AT, 

R = n’ar’,2/a 

with boundary conditions 

(14a-c) 

r= I: u=O, T=O 

r = /Jr’, = R: u=O, T=l. (15) 

The parameters which appear are the Rayleigh 
number, Ra, the dimensionless rotation rate, f2, and 
the radius ratio, R. 

Pressure may be eliminated from equations (1 la) 
and (11 b) by cross-differentiation. We obtain 

Equations (13), (16) and (17), together with bound- 
ary conditions (18) and (20), describe the flow in a 
coordinate system rotating with the porous annulus. 
The governing parameters are Ru, R and R. The equa- 
tions admit steady periodic solutions in which the flow 
and temperature fields rotate at a constant angular 
velocity within the annulus while being locked to the 
rotating external gravity vector. 

2.2. Non-rotating coordinate system 
Consider next a porous annulus which is in steady 

rotation with respect to a fixed (inertial) reference 
frame, as in Fig. l(a). With respect to the tixed frame 
(in this case fixed to the gravity vector), the annulus 
rotates counterclockwise at a steady angular speed R’. 
For rectilinear motion of a porous medium without 
acceleration, Darcy’s law remains the same as if the 
porous medium was at rest, except that a relative 
velocity appears [lo]. In general. in a fluid body 
undergoing rotation each fluid particle experiences 
centrifugal and Coriolis forces. However, such forces 
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may be neglected at low rotation rates, as is assumed 
in the present study (i.e. large Ek and small Fr). Thus, 
the appropriate Darcy equations are, after accounting 
for the relative velocity : 

r-direction 

K 
I(’ s - 

P 1 -pg/?(T’-T;)cose- 5 
1 
; WI 

fIdirection 

Wb) 

Note that the time variable arises via the time depen- 
dence of T’ and p’. If the latter are time invariant in 
the fixed frame, the velocity field is also time invariant. 

The continuity equation is unchanged from its form 
in equation (6). However, the energy equation intro- 
duces an additional term because the motion of the 
porous matrix contributes to heat transport in the 0- 
direction. The energy equation becomes 

+NPc),- WrlQ -gj+ dT’ = kV2T’. (22) 

Using the characteristic quantities given in equation 
(IO), and introducing the stream function, the govem- 
ing dimensionless equations are 

V2$ = -2Q/a-Ra 1 (24) 

and 

1 ati ati 
L(=--, 

r ae 
v= -- 

ar (25a,W 

with boundary conditions 

f- 1: $=S,, T-O 

r-R: JI-0, T=l. (26) 

The additional boundary condition needed to deter- 
mine $ ,, analogous to equation (20), is 

JI, = Q(R’- 1)/2a+ g T sin 0 de dr. 

(27) 

Results are presented for a range of Rayleigh num- 
bers from Ra = 50 to 200, and for rotation rates from 
R = 0 to 1001~ The radius ratio was held lixed at 
R = 2. Except for Fig. 5, the heat capacity ratio was 
takenasa- 1. 

Note in the above set of equations (23~(27) that The graphs shown in Fig. 2 are temperature and 
the time variable enters explicitly only in the energy flow fields obtained by increasing the rotation rate, R. 
equation. Indeed, as we shall see later for the present The left column displays isotherms, the center column 
non-rotating, gravitationally-t&d coordinate system, displays steady-state streamlines (I,+) in the gravi- 
steady state solutions arise. Also note that four par- tational reference frame (i.e. Fig. I(a)), and the right 

ameters appear in the governing equations : Ra, R, R 
and the heat capacity ratio u. 

2.3. Comersion between rotating and non-rotating 

reference frames 

Solutions of the governing equations are readily 
transferred between the rotating and the non-rotating, 
gravitationally-locked, coordinate frames. All physi- 
cal quantities, except v, JI, and 8, exactly correspond 
in the two systems. To avoid confusion, we will hence- 
forth attach overbars to values from the rotatingcoor- 
dinate system, such that 

v = 8+Rr/a (28a) 

$ = $-f2(r2 - R2)/2a. (28b) 

Quantities without overbars on the left refer to the 
non-rotating coordinate system of Fig. 1 (a) ; such solu- 
tions are obtained from equations (23) to (27). Quan- 
tities with overbars refer to the rotating coordinate 
system of Fig. l(b) ; such flows are governed by equa- 
tions (13), (16)-(18), and (20). 

3. NUMERICAL METHOD 

Finite difference techniques with uniform mesh size 
(18 x 36) or (36x 72) are used in the numerical 
approach to discretize the entire annulus. The Poisson 
equations (16) or (24) are solved by the method of 
successive over-relaxation. The energy equations (13) 
or (23) are solved by an alternating direction implicit 
method (ADI). Central differences are used in the 
numerical formulation of the advective terms. 

The ADI method requires boundary conditions in 
r as well as 6. The only physical condition that prevails 
at the end points in the O-direction is the periodicity 
condition (19). The resulting matrices are handled by 
a partition procedure, as used in ref. [ 111. 

The value of the stream function on the inner 
boundary is found by numerically evaluating the 
integrals in equation (20) or (27) by using a type of 
trapezoidal rule integration. 

Numerical computations were carried out with time 
increments ranging from 0.0005 to 0.002 until the flow 
and temperature fields reached the steady (or steady- 
periodic) state. The choice of initial conditions was 
not observed to have any effect on the final solution 
for the ranges of Ra and R considered. 

4. RESULTS AND DISCUSSION 
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column displays streamlines (4) relative to the rotat- 
ing porous matrix. Note for Fig. 2(a), when R = 0, 
that the two flow fields are identical and tj = $. In the 
rotating coordinate frame (i.e. Fig. l(b)), the flows 
are steady periodic and are locked with the rotating 
gravity vector. For convenience, the flows in this coor- 
dinate frame are shown with the gravity vector in the 
downward position. On each of the graphs in Fig. 2, 
the positive &direction is in the counterclockwise di- 
rection. Figure 2(a), with $2 = 0, reproduces the 
results published by Caltagirone [4]. Also shown in 
Fig. 2 are the heat transfer rates 4, and cS2 on the 
inner and outer boundaries, respectively. These values 
are in the ratio 4 ,/& = 2 when the radius ratio R = 2. 

flow fields T and $ are steady periodic and rotate at 
a constant angular speed Q. Except for the angular 
position, the temperature and Bow fields in Fig. 2 can 
be obtained from equations (13) and (16). 

From the sequence of Fig. 2, we may notice some 
of the effects induced by rotation, namely the loss of 
symmetry, the occurrence of a net circulating flow $,, 
and the appearance of a phase angle (defined as 6,) 
between the gravity direction and the location of the 
maximum local heat transfer on the outer boundary. 
Another important effect is the drastic reduction in 
the overall heat transfer between the outer and inner 
radial boundaries with increasing R. 

The graphs of Fig. 2 were obtained by numerically 
solving equations (23) and (24) in the gravitational 
reference frame. The flow field relative to the porous 
matrix, $. was deduced by using equation (28b). 

A solution obtained by solving equations (13) and 
(16) in the rotating reference frame produces results 
which are, except for the angular position of the grav- 
ity vector, identical to Fig. 2(d). The temperature and 

Figure 3 displays f$, d,, $,, and A$,,,,, as func- 
tions of the rotation rate R for Ra = 100 and u = 1. 

A&‘,,, = ($,,,‘,.,-$,,,)/2 is a measure of the intensity 
of the flow relative to the porous matrix. Results for 
other values of Ra are shown in Fig. 4. 

4.1. Effect of rotation on heat transfer 
It is observed in Figs. 3 and 4(a) that the heat 

transfer rate decreases monotonically towards the 

$, =2.66 v_ = 9.962 
qls = 1.33 w m,n = -9.962 
6, zoo 

” 
=o 

(a) S2 =O 

8, -2.61 w_= 13.63 

$s 3 1.30 w* = -6.26 
$3 19O WI = 6.26 

(b) i2 P 2 R 

i&t_ = 9.962 

Vln,” = -9.962 
ij7, PO 

0 + 
4 

j?_= 6.26 

Vmtn = -12.64 

VI- = 4.22 

FIG. 2. Isotherms (left column), streamlines + (center column), and streamlines 6 (right column) for a 
range of rotation rates, Q, with Ra = 100 and u = 1. The center column of $-streamline graphs corresponds 
to a coordinate system fixed to the gravity vector; the porous annulus rotates counterclockwise. The right 
column of &streamline graphs shows streamlines relative to the porous matrix; the coordinate system 
rotates with the matrix, the gravity vector rotates clockwise, and the flow is shown when g is directed 

downwards. 
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FIG. 3. Effect of angular v&city R on the phase angle, 0,. the heat transfer rate at the inner boundary, 
tp,, the net circulation aroun:Jithe ~~~1~. gl, and the flow intensity relative to the porous matrix, 

MX Illps -&,&2. Ra = 100 and d = 1. 

pure conduction value of 1.44 as 0 is increased. It is 
also observed in Fig. 3 that the intensity of the flow 
field relative to the porous matrix, which may be 
expressed as A&_, increases slightly and remains 
quite strong for all Q. This apparent contrad~tion 
disappears when one considers that the orientation of 
the Row field $ shown in Figs. 2(b)-(f) (i.e. the right- 
hand column of graphs) is locked with the gravity 
vector and rotates continuou~y with time. In other 
words, the streamlines shown do not correspond to a 
steady state and consequently do not represent fluid 
trajectories. 

A way to understand physically how the convective 
heat transfer is reduced with increasing a is to con- 
sider the sequence of flow fields fcI in Fig. 2 (i.e. the 
center column of graphs). These Bow fields cor- 
respond to steady states and consequently the stream- 
lines shown describe the paths of fluid particles 
around the annulus. The heat transport from outer to 
inner boundary is related to the amplitude of the fluid 
motion in the radial direction and it is observed in 
these figures that this amplitude is reduced with 
increasing Q. 

The presence of the Brinkman term in the governing 
equations would not change the quahtative behavior 
already described. As shown in ref. [7], an increasing 
Darcy number would lower the heat transfer rates 
given. in Figs. 3 and 4(a). 

The intensity of the flow geld relative to the porous 
matrix, A&,,,,, is higher with rotation than without 
rotation. This is understandable when the following 
facts are considered : the gravity field g is always pre- 
sent with the same strength, no matter how high the 
value of R; them is no fluid inertia and the fluid 

particles are imm~ia~ly accelerated to the velocity 
that equilibrates with the imposed buoyancy force; 
and the temperature field associated with the reduced 
convective heat transfer does not exert on the flow 
field 6 the buoyant force that occurs when S2 is equal 
to zero. 

The heat transfer reduction is accompanied by the 
phase angle 0, defined previously. As seen in Figs. 3 
and 4(c), f$, increases from zero to an asymptotic value 
of x/2 with increasing R. Also, the net circulating flow 
1,6, destroys the symmetry of the flow observed in Fig. 
2(a). From Figs. 3 and 4(b), 4, increases, reaches a 
m~imum, and then decreases as Q is increased. In 
the latter limit, there is a tendency for the original 
symmetry to reappear. 

It may be noticed in Figs. 3 and 4 that the quantities 
t9,, # 1, q?, and A&,,_ satisfy the following conditions 
of symmetry and antisymmetry in the neighborhood 
of fJ = 0 as required by the physics of the problem : 

In summary, the e&ct of an imposed rotation is to 
disturb the flow pattern in a way that greatfy reduces 
the convective heat transfer. This is the major conse- 
quence of rotation within the range of governing par- 
ameters considered here and a similar trend is 
expected for other problems involving rotation about 
a horizontal axis. A decrease of heat transfer by 
rotation has also been reported by Hide and Mason 
[12] for the case of a tluid-filled vertical annulus rotat- 
ing about its axis. For that situation, however, the 
inner boundary was heated and heat transfer inhi- 
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bition occurs for different reasons, tied up to the shown in Fig. 4(b), the occurrence of a non-zero value 
axisymmetry of the flow. for 6, ($, = $ , - JI P from equation (28b)) is clearly 

the result of free convection. Without rotation, the 
4.2. Induced net circulating flow free convection produces a flow field consisting of two 

Without convection, the net circulating flow, rela- contrarotating cells, as shown in Fig. 2(a). When a 
tive to the coordinate system fixed with the gravity small rotation rate is introduced, the presence of those 
vector, would be the one corresponding to solid body cells, which are locked with the gravity vector, con- 
rotation, +:= R(R*-1)/2a. In other words, as stitutes an obstacle to the full establishment of solid 

I I I I 1 
0 20 40 60 80 100 

R/n 

-20 

T @) 

-15 

FIG. 4. Effect of Ro and R. u = 1. (a) Heat transfer rate at inner boundary, 4,. (b) Net circulation. 6,. 
around the annulus. (c) Phase angle 0,. 
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FIG. 4-Continued. 

body rotation for the fluid. Thus jl, is smaller than 
#I’and a negative value of tJ1 occurs. With increasing 
Q, the ceils gradually vanish from the Row field 
(sequence of J/ fields in Fig. 2) and $, -+ $7. 

4.3. Inlpuence of d 

The role of 6, which appears in equations (23); 
(24) and (27), arises from the connection between 
the rotational and gravitationally-locked coordi- 
nate systems expressed by the relationship JI = 
$-Q(r2-R2)/20. This is evidenced by the resufts 
in Fig. 5 (which have been obtained from equations 
03) and (24)), and which correspond to G = 0.5. 
Whiie the temperature field and the flow field (G in the 
rotating frame correspond perfectly to Fig. 2(d), the 
flow field $ in the gravitational frame is more com- 
parable to Fig. 2(e). As the heat capacity @&is larger 
in Fig. 5, a smaller amplitude of fiuid motion in the 
radial direction is required to convey the same amount 
of heat between the two boundaries. 

5. SUMMARY 

Numerical calculations were carried out to study 
natural convection in a horixontal annular porous 
layer in rotation about its own axis in a gravity field, 
The outer boundary of the annulus was maintained at 
a higher temperature than the inner boundary. Flow 
fields were examined in both rotating and gravita- 
tionally-fixed coordinate frames. Rotational effects 
arise only through the thermal inertia of the porous 
matrix. Since fluid inertia effects do not arise in the 
Darcy momentum equations, the natural convection 
flows were observed to lock onto the rotating gravity 
vector. 

Natural convection in the presence of rotation 
induces a net circulating flow around the annulus 
relative to the rotating matrix (6, in Figs. 3 and 4(b)). 
Also, the intensity of natural convection within the 
annuius, relative to the rotating matrix, was observed 
to increase stightly with rotation rate (A~~~ in Fig. 

I), cl.78 \Y_r 88.5 
;- 

= 9.17 
+s = 0.877 Y%llU=u * =: -15.27 
%,=?3” II = 88.g V, t -7.78 

Fro. 5. Isotherms (left graph), streamiines $ @enter graph), and streamlines $ (right graph) when R = IOn, 
Ra = 100 and o x: OS. Compare with Fig. 2(d) to deduce the effect of u. 



Convective heat transfer inhibition %3 

3) with Ra constant. Most significantly, the convective 
heat transfer rate was observed to &reuse with 
increasing rotation rate (the heat transfer rate, Q ,, at 
the inner boundary is shown in Figs. 3 and 4(a)). This 
is attributable to the heat capacity, and rotation, of 
the porous matrix. As the rotation rate, R, is 
increased, fluid trajectories relative to the gravi- 
tational frame (the $-fields in Fig. 2) show a reduced 
radial amplitude. This corresponds to a reduced radial 
convective heat transfer. 

Acknowle&emenu-The authors wish to acknowledge the 
support of Ecole Polytechnique for a sabbatical leave (Luc 
Robillard) and the National Science Foundation for support 
under grant MEA 8401489. This research was conducted 
using the Cornell National Supercomputer Facility (CNSF), 
a resource of the Cornell Theory Center, which receives 
funding from NSF, IBM Corporation, New York State, and 
the Theory Center Corporate Research Institute. We also 
wish to acknowledge helpful discussions with Faluso Lade- 
inde, William R. C. Phillips, and Sidney Leibovich. 

REFERENCES 

1. C. 0. Ball and F. C. W. Olson, Sterilization in Food 
Technology. McGraw-Hill, New York (1957). 

2. L. E. Clifcom, G. T. Peterson, J. M. Boyd and J. H. 
O’Neil, A new principle for agitating in processing of 
canned foods, Fd Technol. 4.450-460 (1950). 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Il. 

12. 

F. Ladeinde, Studies of thermal convection in xlf-gravi- 
tating and rotating horizontal cylinders in a vertical 
external gravity field, Ph.D. Thesis, Cornell University, 
Ithaca, New York (1988). 
J. P. Caltagirone, Thermoconvective instabilities in a 
porous medium bounded by two concentric cylinders, 1. 
Fluid Me& 76,337-362 (1976). 
G. K. Batchelor, An Introduction to Fluid Dynamics. 
Cambridge University Press, London (1967). 
P. Cheng, Heat transfer in geothermal systems. In 
Advances in Heat Transfer, Vol. 14, pp. I-105. Academic 
Press, New York (1978). 
J. Bear. Dvnamics q/ Fluids in Porous Media. Elsevier, 
New York (1972). 
P. Vasseur and L. Robillard, The Brinkman model for 
boundary layer regime in a rectangular cavity with uni- 
form heat flux from the side, Inr. J. Heat Mass Transfer 
30,717-727 (1987). 
M. Prud’homme, L. Robillard and P. Vasseur, A study 
of laminar free convection in a non-uniformly heated 
annular fluid layer, Int. J. Heat Mass Tramfer 30, 1209- 
1222 (1987). 
M. Prats, The effect of horizontal fluid flow on thermally 
induced convection currents in porous mediums, J. 
Geophys. Res. 71,4835-4838 (196&j. 
W. R. C. PhilliDs. The aenerafi laaranxian mean 
equations and streamwi~vortices. In ~ear_Wall Tur- 
bulence (Edited by S. Kline). Hemisphere, Sew York 
(1988). 
R. Hide and P. J. Mason, Heat transfer in geothermal 
systems-sloping convection in a rotating fluid, Adu. 
Phys. 24.47-100 (1975). 

lNHlBlTlON DU TRANSFERT THERMIQUE CONVECTIF DANS UNE COUCHE 
POREUSE ANNULAIRE TOURNANT A FAIBLE VITESSE ANGULAIRE 

R&an&-On itudie la convection naturelle dans une couche poreuse annulaire horixontale. en rotation 
autour de son axe. Des conditions aux limites isothermes sont appliqueee sur ks frontieres indrieure et 
exttrieure, cette demiere itant plus chaude. Aucune symetrie par rapport I un diametre vertical ne peut 
&e esp& pour les champs de temperature et de vitesse et on doit considtrer toute la region. On obtieat 
numeriquement des solutions permanentes bidimensionnelks. Les rcSultats montrent que la rotation gentre 
un Coulement de circulation autour de l’anneau par rapport B la matrice poreuse et qu’elle rMuit 
notablement le transfert thermique global. Ces effets se produisent ti des vitesses angulaires relativement 
faibks pour ksquelles la force centrifuge est nCgligeable a celle de pesanteur et les effets d’inertie peuvent 

&tre n&Jig&. 

BEHINDERUNG DES KONVEKTIVEN WARMETRANSPORTS IN EINEM PORGSEN, 
LANGSAM ROTlERENDEN RlNGSPALT 

Zaaammenfasaung-Die natiirliche Konvektion in einem horixontalen poriisen Ringspalt, der urn seine 
Achse rotiert, wird untersucht. An der inneren und it&ten Berandung herrscht konstante Temperatur. 
wobei die iiuJ3ere Berandung w%rmer ist. Unter sokhen Bedingungen kann nicht erwartet werden, dag das 
Striimungs- und das Temperaturfeld bexi&lich der senkrechten Achse symmetrisch ist-der gesamte 
Ringraum mug betrachtet werden. Das xweidimensional stationgre Problem wird gel&t. Die Ergebnisse 
xeigen, daB die Rotationsbewegung eine Zirkulationsstr6mung im Ringraum venusacht, welche die por6se 
Matrix in Umfangsrichtung durchdringt und den Geaamtwiirmetibergang drastisch beeinttichtigt. Diem 
Effekte treten bei relativ kleinen Winkelgeschwindigkeiten auf, bei denen die Zentrifugalkr?Xte gegeniiber 

der Schwerkraft vemachh%sigt werden k6nnen, dies gilt such Rir die Ttigheitscffekte. 

TIOMBJIEHWE KOHBEKTHBHOTO TEHJlOllEPEHOCA B KOJILHEBOM HOPHCTOM 
CJlOE, BPAIBAIOLBEMCJJ CO CJIABOH Yl-JIOBGH CKOPOCTblG 


